

Sistemas de Equação

Teoria

Sistema de equações com duas incógnitas

Uma equação com duas incógnitas poderemos ter infinitas soluções. Exemplo: x + y = 10, aqui poderíamos ter como respostas (0, 10), (1, 9), (2, 8),..., e assim por diante. Para descobrirmos os valores de x e y precisamos ter no mínimo duas equações, por exemplo:

$$\begin{cases} 2x - y = 10 \\ 3x + 2y = 1 \end{cases}$$

Se substituirmos o x = 3 e o y = -4, temos:

$$\begin{cases} 2.3 - (-4) = 6 + 4 = 10 \\ 3.3 + 2.(-4) = 9 - 8 = 1 \end{cases}$$

Obtemos os resultados da igualdade, logo (3, - 4) é a solução deste sistema.

A solução de um sistema de equações sempre será um par ordenado (x, y) que ao substituir no sistema satisfaz as duas equações.

Método da substituição

Solução de sistemas pelo método da substituição:

Passo 1: Escolher uma incógnita em uma das equações e calcular seu valor algébrico.

Passo 2: Substituir o valor algébrico da incógnita na outra equação.

Passo 3: Calcular o valor numérico de uma das incógnitas.

Passo 4: Substituir o valor numérico de x em qualquer uma das duas equações e encontrar o valor numérico de y.

Exemplo:

Encontre a solução do sistema a seguir:

$$\begin{cases} 3x - y = 10 \\ 2x + 5y = 1 \end{cases}$$

Escolhi a incógnita y na 1ª equação:

$$3x - y = 10 \rightarrow -y = 10 - 3x \rightarrow y = 3x - 10$$

Substituindo na segunda equação esse valor algébrico de y:

$$2x + 5y = 1 \rightarrow 2x + 5$$
. $(3x-10) = 1 \rightarrow 2x = 15x - 50 = 1 \rightarrow 17x = 51 \rightarrow x = 3$

Após encontrar o valor numérico de x, escolha uma das equações para cumprir o quarto e último passo: obter o valor numérico de y. Escolhemos, para isso, a primeira equação. Observe:

$$2x + 5y = 1 \rightarrow 2 \cdot 3 + 5y = 1 \rightarrow 5y = 1 - 6 \rightarrow 5y = -5 \rightarrow y = -1$$

A solução desse sistema é S = {3, -1}

Método da adição

Este método é bem eficaz em sistemas lineares 2x2:

Passo 1: Escolher uma incógnita e multiplique sua equação pelo valor numérico da mesma incógnita em outra equação.

Passo 2: Faça o mesmo na outra equação escolhida, mas agora multiplicando pelo valor numérico da incógnita da primeira equação.

Passo 3: Soma essas duas equações.

Passo 4: Após encontrar o valor de uma incógnita, volte em qualquer uma das duas equações originais e substitua o valor encontrado para encontrar o valor da outra incógnita.

Exemplo:

Resolva o sistema linear a seguir pelo método da adição.

$$\begin{cases} 3x - y = 10 \\ 2x + 5y = 1 \end{cases}$$

Escolhi a incógnita y, então, vou multiplicar uma pela outra.

$$\begin{cases} 3x - y = 10 \rightarrow x5 \\ 2x + 5y = 1 \rightarrow x1 \\ \hline 17x + 0y = 51 \\ 17x = 51 \\ x = \frac{51}{17} = 3 \end{cases}$$

$$\begin{cases} 15x - 5y = 50 \\ 2x + 5y = 1 \end{cases}$$

Volto para qualquer uma das equações originais e substituo o valor de x = 3.

$$3x - y = 10 \rightarrow 3 \cdot 3 - y = 10 \rightarrow -y = 10 - 9 \rightarrow y = -1$$

S = {3, -1}

Exercícios

- 1. Carla comprou canetas por 2 reais e cadernetas por 3 reais pagando um total de 55 reais. Sabendo que ela levou 25 objetos, monte o sistema que representa essa compra.
- **2.** Resolva $\begin{cases} x + y = 4 \\ 2x 3y = 3 \end{cases}$
- **3.** Resolva $\begin{cases} x + y = 10 \\ x y = 6 \end{cases}$
- **4.** Resolva $\begin{cases} x + y = 20 \\ 3x + 4y = 72 \end{cases}$
- **5.** Desafio, resolva $\begin{cases} x + y = 15 \\ x y = 5 \end{cases}$

Gabaritos

1.
$$\begin{cases} x + y = 25 \\ 2x + 3y = 55 \end{cases}$$

2. Determine o x:

$$X = 4 - y$$

Substitui na outra equação:

$$2(4 - y) - 3y = 3$$

$$8 - 2y - 3y = 3$$

$$-5y = 3 - 8$$

$$-5y = -5$$

$$y = 1$$

Substitui o valor do y na primeira equação:

$$x + 1 = 4$$

 $x = 3$
 $S = \{(3, 1)\}$

3. Faça a soma:

$$\begin{cases} x + y = 10 \\ x - y = 6 \end{cases} +$$

$$2x = 16$$

$$x = 8$$

Substitui o valor de x em qualquer uma das equações, vou fazer com a primeira:

$$8 + y = 10$$

 $y = 10 - 8$
 $y = 2$
 $S = \{(8, 2)\}$

4. Resolvendo pelo método da substituição, temos:

$$\begin{cases} x + y = 20 \\ 3x + 4y = 72 \\ x = 20 - y \end{cases}$$

Substitui na segunda equação:

$$3(20 - y) + 4y = 72$$

$$60 - 3y + 4y = 72$$

$$y = 72 - 60$$

$$y = 12$$

Substitui para encontrar o x:

$$x = 20 - y$$
$$x = 20 - 12$$
$$x = 8$$

5. Escolha o método que quer usar, aqui vou resolver pelo método de adição

$$\begin{cases} x + y = 15 \\ x - \underline{y} = 5 \end{cases} +$$

$$2x = 20$$

$$x = 10$$

Substituindo na primeira equação (pode ser segunda também):

$$10 + y = 15$$

$$y = 15 - 10$$

$$y = 5$$

$$S = \{(10, 5)\}$$